Engineering application module: Personal and public transport

30 hours indicative time

Select one or more forms of transport in this module. Some examples include: bicycles, motor cars, boats, motor cycles, buses, trucks, trains and trams.

Outcomes

A student:

- H1.2 differentiates between the properties and structure of materials and justifies the selection of materials in engineering applications
- H2.1 determines suitable properties, uses and applications of materials, components and processes in engineering
- H3.1 demonstrates proficiency in the use of mathematical, scientific and graphical methods to analyse and solve problems of engineering practice
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H3.3 develops and uses specialised techniques in the application of graphics as a communication tool
- H4.1 investigates the extent of technological change in engineering
- H4.2 applies knowledge of history and technological change to engineering-based problems
- H4.3 applies understanding of social, environmental and cultural implications of technological change in engineering to the analysis of specific engineering problems
- H5.1 works individually and in teams to solve specific engineering problems and prepare engineering reports
- H6.1 demonstrates skills in research and problem-solving related to engineering
- H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering.

1. Historical and societal influences	
Students learn about:	Notes:
 historical developments in transport systems 	
 effects of engineering innovation in transport on society 	
 construction and processing materials used over time 	
 environmental effects of transport systems 	
 environmental implications from the use of materials in transport 	

Students learn to:		Notes:
•	investigate the history of technological change related to transport and its impact on society	
	identify design features in the engineering of transport systems	

	describe the environmental impact of energy requirements for transport systems	
•	analyse the impact of	
	developments in transport systems	
	on the environment	

2. Engineering mechanics	
Students learn about:	Notes:
simple machines	 Simple machines equations for its mechanical system. Mechanical advantage (MA) Mechanical advantage (MA) Mechanical advantage (MA) is the measure of how useful and help a machine is to the user. MA in mechanical machine, is the ratio of load to the effort. The higher the MA, the lower the effort is required for the load. If MA is below one, then it is known as mechanical disadvantage, which mean the effort is greater than the load. MA = L/E where MA = Mechanical Advantage L = Load E = Effort Velocity ratio (VR) VR is the ratio of the distance the effort moves to the distance of the load moves in a mechanical system. The higher the VR the greater, the greater the distance the user must move. VR = de/di where VR = Velocity Ratio de e distance the effort moves distance the load moves
	 Efficiency (η) An ideal machine would have 100 % efficiency. But there is always some type of energy that is transfer into different forms of energy, and this is energy loss, which means that the machine isn't 100 % efficient.

	 MA is always less then VR
	 To calculate the energy efficiency percentage
	$\eta = \frac{MA}{VR} \times 100$ where η = percentage efficiency MA = Mechanical Advanrage VR = Velocity Ratio
 static friction concept of friction and its application in engineering 	 Static friction is friction that relates to an object that is either not moving or is at the verge of moving. If an object moves the engineers deal with kinetic friction [NOT IMPORTANT] Concept of friction and its application in engineering Friction is a stopping force, and without it, one cannot simply brake or tighten a screw. Though it would mean all energy is converted in the machine and is 100 % efficient. [Note is will be difficult to manage the machine] Thus, friction is known as the enemy of efficiency, as a small amount of input power will convert in friction force or a stopping force and as a result, output a lower power. Frictional force always means it oppose the motion and will cause wear and maintenance. But the concept of friction is essential in life, as it provide advantages of braking and stopping situations.
 coefficient of friction normal force friction force angle of static friction angle of repose 	 Coefficient of friction is denoted as μ, Mu. μ = F_F/R_N where μ = coefficient of friction F_F = Frictional force R_N = Reaction force, Normal force It can also be found by using the angle of repose μ = tan (Θ) Normal force Normal force is the force that is always acted perpendicular to the surface of an object. Usual equation: R_N = mgcosθ - Friction force Friction force is always opposite in the direction of motion. Friction force Friction force is always opposite in the direction of motion. Friction force Friction force
	 Two things define a friction force; frictional resistance and force resisting the tendency toward motion between the surface.

	$F_{F} = \mu R_{N}$ • Limiting friction is the friction resistance that exist when an object is about to move - Angle of static friction • Angle of static friction is important upon founding the coefficient of friction. • In normal static friction diagram, there are usually 4 forces, Weight, Reaction, Load (P) and Frictional force. If the vectors of friction force and reaction force are added, then there would be a resultant force and a total of 3 forces. This resultant will have an angle with the reaction normal force. This angle is known as angle of static friction. • The angle of static friction is used to determine μ . • When limiting friction is used or an incline, the angle of static friction is equal to the angle of incline Angle of Repose • The angle of repose is equal to angle of static friction proof. • Imagine an object on an incline. $\mu = \frac{F_{F}}{R_{N}}$ $\mu = \frac{W \sin \theta}{W \cos \theta} = \tan \theta$ $\therefore \tan \theta = \tan(\phi_{S})$ $\theta = \phi_{S}$
 basic calculations for work, energy and power potential energy kinetic energy 	• Work Work is the ability to move on object requiring a force over a displacement. $W = F \times s \times cos\theta$ • Energy Energy is the capability to undergo work. - Potential Energy The energy at which allows to object to be in a fixed position on a planet GPE = mgh - Kinetic Energy An object that is in motion will possess Kinetic energy. $KE = \frac{1}{2}mv^2$

Conversation of Mechanical Energy
As an object gains GPE, it will start to lose KE, and conversely
$KE_i - KE_f = GPE_f - GPE_i$
1 . 1 .
$\frac{1}{2}mv_i^2 - \frac{1}{2}mv_f^2 = mgh_f - mgh_i$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{2}m(v_{i}^{2}-v_{e}^{2})=ma(h_{e}-h_{i})$
OR
KE = GPE
1
$\frac{1}{2}mv^2 = mgh$
$2^{2} - 2ah$
v = 2gn
$v = \sqrt{2gh}$
Strain Energy
Strain Energy is a type of notential energy mainly used for the expansion and contraction of springs
1
SE = -Fe
2
where $e = extension(m)$
Power
Power is the rate of doing work .
P = -
t
$=\frac{FS}{T}$
-t
$-F^{\underline{S}}$
$= \frac{1}{t}$
= Fv

Students learn to:	Notes:

	apply mathematical and/or graphical methods to solve engineering problems related to transport including mechanical advantage, velocity ratio and efficiency	
•	analyze problems involving static friction	
	differentiate between the concepts of energy and power and apply appropriate basic calculations	

3. Engineering materials	
Students learn about:	Notes:
 testing of materials hardness impact 	 The testing of material is improving the understanding of properties of that material Hardness tests Brinell

	 Impact tests Impact tests are carried out to determine the notch toughness of a material. A material is shaped as a rectangular prism with a V notch in the centre. The notch is subjected to a concentrated shock load to found its toughness. Tough material will not break easily compared to brittle materials. Izod test Izod test is an impacting testing method that requires a pendulum and a scale. The test specimen is to place vertically in the centre of while supporters. It is placed so that the V notch is facing away from the pendulum. The scale is calibrated and the pendulum is raised to a specific height. [Provide GPE] Upon release, it loses GPE and hence gains KE. When it swings, and strikes the test, the KE will be absorbed by the test into breaking it. After impacting and breaking of the piece, the remaining KE will act forward lifting the pendulum and gain GPE. Thus, loses KE, until all the energy is used to gain height. To more the toughnese, the difference of the height is taken
	 Charpy test
	 Charpy test has the same procedure as Izod testing, but the position of the specimen is placed different. Instead of vertically, the test is held horizontally with the V notch placed facing away of the pendulum.
 heat treatment of ferrous metals 	Heat treatment
 annealing normalising 	 Heat treatment of metal usually consist of heating the metal to above its recrystallization temperature and it then either air cooled, or quench at different rates to obtain the desired properties. Annealing
 hardening and tempering 	 Process annealing
 changes in macrostructure and microstructure changes in properties 	 Process annealing is often heat treated for soft metal containing low carbon content. The metal is heated to around 550 – 650 degrees, and it air cooled. This relieve any stress from the distorted grains, whilst producing recrystallised ferrite, and leaving a small amount of pearlite in stressed/deformed state.
	– Full annealing
	 Full annealing involves heating the metal to 900 degrees, before allowing too slowly cool in a furnace. This places the unstressed grains back into its equilibrium condition, providing a soft metal and unstressed grains.
	 Normalising
	 The metal is heats to above the critical temperature and recrystallization temperature. Then is air cooled at a faster rate than full annealing, providing a finer grain structure, increasing yield strength, UTS and toughness, however decreases in ductility.

	 Hardening Hardening steel depends on it carbon content. Steel with carbon content is heated and then quenched. This result in the steel transforming from FCC to BCC, leaves the carbon trapped in the distorted lattice causing a stress state. This is known as Martensite and found in steel with >0.03% carbon content. Tempering Tempering is done after hardening when the metal has obtained Martensite (a hard structure making them brittle). The metal is heated to around 200-600 degrees and is air cooled. This reduces the hardness of the metal whilst increasing the toughness the same. Changes in macrostructure and microstructure Annealed → coarse grain structure → soft with moderate strength Normalised → fine grain structure → higher strength Hardening → stressed grain structure → toughness + hardness.
 manufacturing processes for ferrous metals forging rolling casting extrusion powder forming welding 	 Hot Working → Heated above recrystallization temperature where material is more malleable and easier to deform. Cold Working → Heated below recrystallization temperature where the material will increase in strength and hardness. Forging Forging allows for the desired shape of a metal via undergoing compressive impact. The main advantage of forging is that neat grain structure will follow the flow of the shape, achieving very high strength. Drawing Forge drawing involved hammering the sides to draw out the length whilst reducing the cross section. Upsetting Forge Upsetting involved hammering the on the face to increase the cross section whilst reducing the length. Drop

 Cold rolling (Cold Working) 	
The metal will require more force to deform into the shape, as they are create	
elongated grain structure. This gives them more strength and resilience, however	
reducing the malleability.	stallisation J place
Casting	
	waterlined fine
- Casting is the process of hot molten metal into a mould and letting it our once its cooled.	ad structure
 There are many varieties of casting and the biggest difference is how it is moulded. 	
- Types	
- Types	
- Salid Casting	
 Involves the following steps. Conductive a binder is peaked around the pattern shall of the finished preduct. 	
- Sand with a binder is packed around the pattern shells can be generated product.	
 The mould be cut into two naives where the shells can be removed. 	12.1
The Drag [lower box], is placed with the half of the pattern inside. The sand with the binder [known as gree	an sand] is
packed over the dump box.	
The inverted [flipped over] and a box with the runner and riser is placed on top of the box [cope].	
The cope has two pins, and the molten metal is poured down the runner.	
This is done until both the runner and riser is filled.	
It is then left to solidify and any shrinkage caused by the contraction of the molten metal from the pins wit	<mark>h flow into</mark>
the casting.	
Finally, when it is cooled, the casting is removed and produce the end product.	
This process is the most common casting and is relatively cheap and easy to process.	
It will provide a neater grain structure thought the surface of the product will not be as accurate and neat.	
Therefore, further machinery work is done to achieve the smooth edges.	
– Shell Casting	
Involve the pattern or the shape of the object made in a shell.	
The shell is placed in the top half of the dump box, inside the dump box, sand and resin should fill the box.	
The dump box is flipped over and sand and resin should hold together due to the heat in the pattern shell.	
They are then both heated to around 315 degrees to ensure the hold firmly.	
They are then cured and ready to be ejected of using a small ejector pin. The pattern shell should come off	
Do the same process with the other half of the mould.	
Then they placed together in a box surrounded by metal shots.	
Upon solidification of the casting, the mould should separate providing the end product.	

	This method will provide a better product than sand casting, giving a better dimensional accuracy.
	 However, it is more cost effective and long to obtain.
	 Investment Casting
	– Casting
	Extrusion
	 Extrusion where metal is forced and pressed through a die.
	 Direction Extrusion (Hot Working)
	 The metal is pushed into tubed die, and squeezed out through a hole other end.
	 Indirection Extrusion (Hot Working)
	The metal is pushed in a mould where there no space left but to push the metal outwards. This method is very expensive.
	 Impact Extrusion (Cold Working)
	 The metal is punched by hammer, which force the metal to form around the hammer. Tubes and drink cans are made from impact extrusion.
	 Drawing (Cold Working)
	 Drawing is like extrusion; however, they are used to produce wires, tubing and thin rod. Hence, ductile material is use drawing to form thin wire, with high strength whilst keeping it light weight.
	Powder Forming
	 Powder metallurgy involves metal taking form of powder. This can be done by through, mechanical disintegration, grinding or atomizing power
	Welding
	 Welding allows metals to join, by heating the metals which causes a change to the grain structure.
 changes in macrostructure and 	
microstructure of ferrous metals	
 changes in properties of ferrous 	
metals	
 manufacturing processes for non- 	 These are the material most suitable that work exceptionally well, due their nature.
ferrous metals	– Nickel
 alloving 	– Copper
- annealing	– Magnesium
 solid solution bardening 	– Aluminium
sona sonaton naracining	 Non-ferrous metals do not contain Iron and are usually more corrosive.

	 They will have less magnetic properties and are desirable due to their low weight. Alloying Alloy is the process where there is mixing of two or more elements. This however depends on the size of atomic radius or solute elements These make the metal stronger and harder than regular pure metal.
 changes in macrostructure and microstructure of non-ferrous metals 	
 changes in properties of non- ferrous metals 	
 ceramics and glasses as an insulation material laminating and heat treatment of glass structure/property relationship and their application 	 Structural ceramics: Oxide → Chemical compound consisting of one oxygen atom and other atoms. Boride → Mixture of Boron and metal properties. Carbides → Made of carbon and is usually salt-like. Nitrides → Made of nitrogen. Ceramics Ceramics Ceramics are made from three constituents, Clay, Flint, Feldspar. They have high flexible strength and are used as insulating materials. Application like wear-resistant tiles, electrical insulators on power lines and heat treatment as tiles for space shuttles. Glass Anneal glass Anneal glass Anneal glass. Anneal glass. Anneal glass. Anneal glass. Anneal glass. Tempered (Toughened) Tempered glass is heated to increase the resistance to fracture. The glass is air quenched and cooled, which contracts the glass into internal compression (making them shatter resistance). Laminated

	 Laminated glass consists of layers of glass being sandwiched and in between compressed with PVB (Polyvinyl butyral). The glass is heated inside a furnace making them stronger, as when they fracture, it causes a spider web effect and doesn't shatter. Windscreens and side windows (Application) There has been an advancement that tempered glass is being laminated and using the two properties combined create scratch/wear and shatter resistance glass.
 thermos softening polymers engineering textiles manufacturing processes extrusion injection moulding blow moulding structure/property relationships and application 	 Thermosoftening Polymers These polymers are based of covalent bonding of carbon (C) and Hydrogen (H) to form hydrocarbon. Multiple hydrocarbon form specific polymers. Van Der Waal

Students learn to:	Notes:
 differentiate between the concepts of energy and power and apply appropriate basic calculations 	
 investigate the application of testing of materials 	

 outline how changes in properties occur as a result of heat treatment processes 	
 identify appropriate heat treatment processes 	
 justify appropriate choices for ferrous materials and processes used in transportation parts and systems 	
 experiment with metals to reinforce the concepts of heat treatment 	
 explain the method and applications of various ferrous metal forming processes 	
 justify the use of non-ferrous metals in transportation parts and systems based on relevant structure/property relationships 	
 justify appropriate choices of ceramics and glasses used in transportation parts and systems 	
 justify appropriate choices of polymers used in transportation parts and systems 	
 explain the properties, uses, testing and appropriateness of materials used in transportation 	

4.	Engineering	electricity/electronics
----	-------------	-------------------------

Students learn about:	Notes:
 Power generation/distribution electrical energy and power simple circuits 	 Electrical energy and power Coal Burning coal is the most common method of electrical generation. Power station burn coal, because coal is always readily available as a resource. Uses coal and water as fuel. The coal is first set to boil. The heating of the coal, produces steams which flows and drives the steam turbines. The turbines are connected to a generator which the spun turbine produces electrical energy. This pose the increase in high volumes of carbon dioxide affecting the greenhouse effect. Hydroelectricity These hydroelectric systems offer electricity without atmospheric pollution. Uses the energy of water as fuel. As the gravitational potential energy of water is converted to kinetic flowing water, the water is flowing down into the power station. These rushing water drive the turbines connected to a generator. As the generators produces electricity, the flowing of the water is fed back into the water system for irrigation. This offers little waste to water and less atmospheric pollution. However, this form of system requires mountainous regions and large land for water flow control and channels to provide proper dams. Wind power Another source of alternate energy power source to generate energy. Wind is driven through large turbines, which are like windmills. The momentum of the turbines drives the generators to produce electricity. This method may be the cleanest but will require a lot of turbines to power a large city. Hence vast mass of land must be devoted. Nuclear power T

	 Nuclear power uses nuclear reaction to heat power station. Just like coal power station, coal is the source of heat and steam. In nuclear power station, Uranium atoms are splits causing a nuclear reaction and producing immense heat. This causes steam and heats up the turbines to produce electricity. This method is very non-atmospheric polluted and requires very little fuel. But, other issues arises, like the waste of nuclear power due to radioactivity can be very contaminated for thousands of years. Wrong human errors can lead to devastating situation like, Three Mile Island, Chernobyl and Fukushima.
 electric motors used in transport systems principles applications 	 Electric Motors Principles All Electric motors convert electrical energy into mechanical energy. Using the Motor Effects, Faraday's Law of Electromagnetism and Lenz's Law. Applications They are used as 3 phases synchronous motors, AC induction motors, universal motors and DC motors 3 Phases Synchronous Motors 3 Phases have 3 pairs of electromagnets that are provided by current carrying conductors. With this, it induced a rotating magnetic field which induced currents on the rotor. The rotor is connected to a slip ring commutator for electrical contact and supply current. AC Induction Motor Induction Motors, also uses a 3 Phase system, however, the rotors do not have any contact with the circuit, they are poles of coils connected like a cage (squirrel cage). A rotating magnetic field, will induce current onto the squirrel cage, and hence provide torque for mechanical energy. Universal Motors Universal Motors are in form of a DC motors; however, they allow the suitability for both AC and DC inputs. DC Motors They have a pair of permanent magnets and a coiled rotor, that is connected to a split commutator. Mechanical energy is provided by a current entering the rotor to produce torque via the Motor Effect and hence generate a rotating force on the rotor.
 control technology 	 ■

•	electrical safety	

Students learn to:	Notes:
 identify the electrical systems used in the transport industry 	 Bicycles Lighting for vision at night, Speedometer used as a unit for displaying the distance travel, speed, and maximum speed. Motorcycle Alternator to generate electrical power. Battery to store energy. Rectifier to convert AC to DC. Horn to signal presence on the road. Motor to allow mechanical movement. Light for illumination at night. Electrical Powered Trains
 describe current transmission and simple circuit diagrams 	
 investigate the principles and application of electric motors used in the transport industry, including motor speed control 	
 analyze the basic principles of control technology as applied to the transport industry 	
 appreciate the safe use of electricity and electrical equipment 	

F	
Students learn about:	Notes:
 freehand sketching, design and orthogonal drawings 	
 sectional views 	
Australian Standard (AS 1100)	
 computer graphics, computer aided drawing for orthographic projection 	
collaborative work practices	
Engineering Report writing	

Students learn to:	Notes:
 produce dimensioned, sectioned orthogonal drawings applying appropriate Australian Standard (AS 1100) 	
 use appropriate software to produce orthogonal drawings 	
 work with others and identify the benefits of working as a team 	
 complete an Engineering Report based on the analysis and synthesis of an aspect of personal and public transport using appropriate computer software 	

Peter Tran